ORIGINAL ARTICLE
The methodology of the archival aerial image orientation based on the SfM method
 
More details
Hide details
1
Warsaw University of Technology
 
 
Submission date: 2022-11-10
 
 
Acceptance date: 2022-12-01
 
 
Publication date: 2022-12-16
 
 
Sensors and Machine Learning Applications 2022;1(2)
 
KEYWORDS
ABSTRACT
Nowadays, archival images find increasingly finding their way into geospatial applications, namely, among others, multi-temporal analysis, documentation reconstruction or change detection. It is, therefore, necessary to determine the images' external orientation elements that allow the images' position to be reconstructed in the assumed reference system. This paper aims to present a methodology for the extended evaluation of the automatic orientation process of archival images based on the commonly used Structure-from-Motion (SfM) approach. The work carried out presents: (1) the influence of parameter selection on the accuracy, number and distribution of tie points in the descriptor matching process at the pairwise image bundling stage using the descriptor matching approach together with the use of Random sample consensus filtered triangulation (RANSAC), (2) analyses of the reciprocal orientation quality of the images on detected points (control points) in the bundle adjustment process using simultaneous verification of the matching quality on check points, and (3) analysis of the external orientation accuracy. Points detected and matched using the SIFT algorithm on archival images of a fragment of Warsaw from 1986, 1994, and 2014 were used as reference data. A comparative analysis of the obtained results with the data obtained using the algorithms implemented in the Agisoft Metashape software (standard approach) shows that the relative orientation reprojection RMSE is about 4 time better, and detected points are even more robust.
 
REFERENCES (33)
1.
Farella, E.M.; Morelli, L.; Remondino, F.; Mills, J.P.; Haala, N.; Crompvoets, J. The Eurosdr Time Benchmark for Historical Aerial Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch. 2022, 43, 1175–1182, doi:10.5194/isprs- archivesXLIII-B2-2022-1175-2022.
 
2.
Ratajczak, R.; Crispim-Junior, C.F.; Faure, E.; Fervers, B.; Tougne, L. Automatic Land Cover Reconstruction from Historical Aerial Images: An Evaluation of Features Extraction and Classification Algorithms. IEEE Trans. Image Process. 2019, 28, 3357– 3371, doi:10.1109/TIP.2019.2896492.
 
3.
Zawieska, D.; Markiewicz, J.; Kopiasz, J. Development of True Orthophotomaps of the Fortified Settlement at Biskupin, Site 4, Based on Archival Data. Archaeol. Prospect. 2019, 26, 333–360, doi:10.1002/arp.1748.
 
4.
Nebiker, S.; Lack, N.; Deuber, M. Building Change Detection from Historical Aerial Photographs Using Dense Image Matching and Object-Based Image Analysis. Remote Sens. 2014, 6, 8310–8336, doi:10.3390/rs6098310.
 
5.
Nocerino, E.; Menna, F.; Remondino, F. Multi-Temporal Analysis of Landscapes and Urban Areas. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXIX-B4, 85–90, doi:10.5194/isprsarchives-xxxix-b4-85-2012.
 
6.
Redecker, A.P. Historical Aerial Photographs and Digtal Photogrammetry for Impact Analyses on Derelict Land Sites in Human Settlement Areas. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. Vol. XXXVII. Part B8. Beijing 2008 2008, 5–10.
 
7.
Poli, D.; Casarotto, C.; Strudl, M.; Bollmann, E.; Moe, K.; Legat, K. USE of HISTORICAL AERIAL IMAGES for 3D MODELLING of GLACIERS in the PROVINCE of TRENTO. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch. 2020, 43, 1151– 1158, doi:10.5194/isprs-archives-XLIII-B2-2020-1151-2020.
 
8.
Tuytelaars, T.; Mikolajczyk, K. Local Invariant Feature Detectors: A Survey. Found. Trends Comput. Graph. Vis. 2007, 3, 177 280, doi:10.1561/0600000017.
 
9.
Sevara, C.; Verhoeven, G.; Doneus, M.; Draganits, E. Surfaces from the Visual Past: Recovering High-Resolution Terrain Data from Historic Aerial Imagery for Multitemporal Landscape Analysis. J. Archaeol. Method Theory 2018, 25, 611–642, doi:10.1007/s10816-017-9348-9.
 
10.
Fieber, K.D.; Mills, J.P.; Miller, P.E.; Clarke, L.; Ireland, L.; Fox, A.J. Rigorous 3D Change Determination in Antarctic Peninsula Glaciers from Stereo WorldView-2 and Archival Aerial Imagery. Remote Sens. Environ. 2018, 205, 18–31, doi:10.1016/j.rse.2017.10.042.
 
11.
Jiayan Shen, Xiucheng Guo, Wenzong Zhou, Y.Z. and J.L. Feature Point Matching Method for Aerial Image Based on Recursive Diffusion Algorithm. Symmetry Mdpi 2021,13(3), 407.
 
12.
Kapnias, D.; Milenov, P.; Kay, S. Guidelines for Best Practice and Quality Checking of Ortho Imagery; 2008; ISBN 9789279109690.
 
13.
Sauerbier, M.; Kunz, M.; Fluehler, M.; Remondino, F. PHOTOGRAMMETRIC RECONSTRUCTION OF ADOBE ARCHITECTURE AT TÚCUME , PERU Swiss Federal Institute of Technology. 2004.
 
14.
Micheletti, N.; Lane, S.N.; Chandler, J.H. Application of Archival Aerial Photogrammetry to Quantify Climate Forcing of Alpine Landscapes. Photogramm. Rec. 2015, 30, 143–165, doi:10.1111/phor.12099.
 
15.
Bianco, S.; Ciocca, G.; Marelli, D. Evaluating the Performance of Structure from Motion Pipelines. J. Imaging 2018, 4, 1–18, doi:10.3390/jimaging4080098.
 
16.
Saurer, O.; Fraundorfer, F.; Pollefeys, M. OmniTour: Semi-Automatic Generation of Interactive Virtual Tours from Omnidirectional Video. Proc. 3DPVT 2010, 1–8.
 
17.
Zakiah Noh, Mohd Shahrizal Sunar, Z.P. A Review on Augmented Reality for Virtual Heritage System. Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics); Springer 2009.
 
18.
Markiewicz, J.S. The Use of Computer Vision Algorithms for Automatic Orientation of Terrestrial Laser Scanning Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.- ISPRS Arch. 2016, 41, 315–322, doi:10.5194/isprsarchives-XLI-B3-315-2016.
 
19.
Hatzopoulos, J.N.; Stefanakis, D.; Georgopoulos, A.; Tapinaki, S.; Pantelis, V.; Liritzis, I. Use of Various Surveying Technologies to 3D Digital Mapping and Modelling of Cultural Heritage Structures for Maintenance and Restoration Purposes: The Tholos in Delphi, Greece. Mediterr. Archaeol. Archaeom. 2017, 17, 311–336, doi:10.5281/zenodo.1048937.
 
20.
Tobiasz, A.; Markiewicz, J.; Lapinski, S.; Nikel, J.; Kot, P.; Muradov, M. Review of Methods for Documentation, Management, and Sustainability of Cultural Heritage. Case Study: Museum of King Jan III’s Palace at Wilanów. Sustain. 2019, 11, doi:10.3390/su11247046.
 
21.
Moussa, W.; Abdel-Wahab, M.; Fritsch, D. An Automatic Procedure for Combining Digital Images and Laser Scanner Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXIX-B5, 229–234, doi:10.5194/isprsarchives-xxxix-b5-229-2012.
 
22.
Moussa, W. Integration of Digital Photogrammetry and Terrestrial Laser Scanning for Cultural Heritage Data Recording; 2014; ISBN 9783769651379.
 
23.
Stephens, C.H.& M. A COMBINED CORNER AND EDGE DETECTOR.
 
24.
Low, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 91–110.
 
25.
Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 2008, 110, 346 359, doi:10.1016/j.cviu.2007.09.014.
 
26.
Bay, H.; Tuytelaars, T.; Van Gool, L. Speeded up Robust Features. Lect. Comput. Vis.– ECCV 2006 2006.
 
27.
Nurminen, K.; Litkey, P.; Honkavaara, E.; Vastaranta, M.; Holopainen, M.; LyytikäinenSaarenmaa, P.; Kantola, T.; Lyytikäinen, M. Automation Aspects for the Georeferencing of Photogrammetric Aerial Image Archives in Forested Scenes. Remote Sens. 2015, 7, 1565–1593, doi:10.3390/rs70201565.
 
28.
Guoshen Yu, J.-M.M. ASIFT: An Algorithm for Fully Affine Invariant Comparison.
 
29.
Lowe, D.G. Object Recognition from Local Scale-Invariant Features. Proc. Int. Conf. Comput. Vision, Corfu 1999.
 
30.
Abratkiewicz, K.; Gromek, D.; Samczynski, P.; Markiewicz, J.; Ostrowski, W. The Concept of Applying a SIFT Algorithm and Orthophotomaps in SAR-Based Augmented Integrity Navigation Systems. Proc. Int. Radar Symp. 2019, 2019-June, 1–12, doi:10.23919/IRS.2019.8768136.
 
31.
Tola, E.; Lepetit, V.; Fua, P. DAISY: An Efficient Dense Descriptor Applied to Wide Baseline Stereo. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 815–830, doi:10.1109/TPAMI.2009.77.
 
32.
Brown, M.; Lowe, D. Invariant Features from Interest Point Groups. 2013, 23.1-23.10, doi:10.5244/c.16.23.
 
33.
Chen, Y.; Chen, Y.; Wang, G. Bundle Adjustment Revisited. 2019.
 
 
CITATIONS (2):
1.
The evaluation of hand-crafted and learned-based features in Terrestrial Laser Scanning-Structure-from-Motion (TLS-SfM) indoor point cloud registration: the case study of cultural heritage objects and public interiors
Jakub Markiewicz, Patryk Kot, Łukasz Markiewicz, Magomed Muradov
Heritage Science
 
2.
Evaluation of 2D affine — hand-crafted detectors for feature-based TLS point cloud registration
Jakub Markiewicz
Reports on Geodesy and Geoinformatics
 
eISSN:2753-4154
Journals System - logo
Scroll to top